Converting polygons to Bitmasks

The following script converts polygon labels from the source project into Bitmask labels in the target project. The conversion applies to images, videos, image groups, and image sequences.

For this conversion to be effective, it's crucial that both the source and target projects are linked to the same dataset. The script is agnostic to which workflow stage the source or target data units are in.

ℹ️

Note

To install the required Python dependencies, run the following command in your terminal:

python -m pip install tqdm typer opencv-python numpy encord

This script utilizes Typer, allowing you to conveniently insert arguments in your terminal rather than directly into the script.

To execute the script in your terminal, use the following command:

python script-name.py

Replace script-name.py with the actual name of your script and respond to the prompted questions during execution.

For a non-interactive usage, provide the following parameters:

python script-name.py --keyfile "<ssh_key_path>" --source-project-hash "<source_project_hash>" --target-project-hash "<target_project_hash>"

Replace the placeholders with the appropriate values:

  • script-name.py with the name of your script.
  • <ssh_key_path> with the path to your private SSH key associated with Encord.
  • <source_project_hash> with the hash of the source project containing the polygon labels.
  • <target_project_hash> with the hash of the target project that will contain the bitmask labels.

For example:

python convert-polygons.py --keyfile "~/.ssh/id_ed25519" --source-project-hash "aaaaaa-bbbb-cccc-ddd-eeeeeeeeeee" --target-project-hash "ffffffff-0000-1111-222-333333333`

🚧

WARNING

This script is intended for a one-time operation only. Running it more than once will result in duplicate labels.

import logging
import time
from pathlib import Path
from typing import cast

import cv2
import numpy as np
import typer
from encord import EncordUserClient, Project
from encord.objects import LabelRowV2, Object, Shape
from encord.objects.coordinates import BitmaskCoordinates, PolygonCoordinates
from tqdm import tqdm, trange
from typing_extensions import Annotated

MAX_NUM_EXECUTION_ATTEMPTS = 10


def try_execute(func, kwargs=None):
    for n in range(MAX_NUM_EXECUTION_ATTEMPTS):
        try:
            if kwargs:
                return func(**kwargs)
            else:
                return func()
        except Exception as e:
            logging.warning(
                f"Handling {e} when executing {func} with args {kwargs}.\n" f" Trying again, attempt number {n + 1}."
            )
            time.sleep(0.5 * MAX_NUM_EXECUTION_ATTEMPTS)  # Linear back-off
    raise Exception("Reached maximum number of execution attempts.")


def initialize_label_rows(project: Project, batch_size: int = 200, include_unlabeled: bool = False) -> list[LabelRowV2]:
    label_rows = [lr for lr in project.list_label_rows_v2() if include_unlabeled or lr.label_hash is not None]
    for start in trange(
        0,
        len(label_rows),
        batch_size,
        desc=f"Initializing label rows [{project.title}]",
    ):
        bundle = project.create_bundle()
        for lr in label_rows[start : start + batch_size]:
            lr.initialise_labels(bundle=bundle)
        try_execute(bundle.execute)
    return label_rows


def populate_ontology_of_target_project(
    client: EncordUserClient, source: Project, target: Project
) -> dict[str, Object]:
    # Update the target ontology with potentially missing items
    source_ontology = source.ontology_structure
    target_ontology = client.get_ontology(target.ontology_hash)

    ontology_lookup: dict[str, Object] = {}
    for obj in source_ontology.objects:
        if obj.shape != Shape.POLYGON:
            continue

        # Find the bitmask object in the target ontology with the same name
        match = None
        for tobj in target_ontology.structure.objects:
            if tobj.shape != Shape.BITMASK or tobj.name != obj.name:
                continue
            match = tobj
            break

        if match is None:
            match = target_ontology.structure.add_object(obj.name, Shape.BITMASK)
        ontology_lookup[obj.name] = match

    target_ontology.save()
    return ontology_lookup


def convert_labels(
    keyfile: Annotated[
        Path,
        typer.Option(
            help="Path to private ssh key associated with Encord",
            prompt="Where is your key-file stored?",
        ),
    ],
    source_project_hash: Annotated[
        str,
        typer.Option(
            help="Hash of the project from which annotations and classifications will be copied",
            prompt="What's the project hash of the SOURCE project?",
        ),
    ],
    target_project_hash: Annotated[
        str,
        typer.Option(
            help="Hash of the project where the bitmasks will be added",
            prompt="What's the project hash of the TARGET project?",
        ),
    ],
):
    keyfile = keyfile.expanduser().resolve()

    # create a connection
    user_client = EncordUserClient.create_with_ssh_private_key(keyfile.expanduser().read_text())

    # Initialize projects
    target_project = user_client.get_project(target_project_hash)
    source_project = user_client.get_project(source_project_hash)

    # Set up the ontology for the target project if not filled already.
    ontology_lookup = populate_ontology_of_target_project(user_client, source_project, target_project)
    target_project.refetch_ontology()

    # Initialize labels
    source_project_label_rows = initialize_label_rows(source_project)
    target_project_label_rows = initialize_label_rows(
        target_project,
        include_unlabeled=True,
    )

    # Lookup for reading labels from the source project
    source_project_label_rows_by_data_hash = {lr.data_hash: lr for lr in source_project_label_rows}

    bundle = target_project.create_bundle()
    bundle_size = 0

    # Perform the conversion from polygons to bitmasks and upload.
    for target_lr in tqdm(target_project_label_rows, desc="Migrating labels"):
        source_lr = source_project_label_rows_by_data_hash.get(target_lr.data_hash)
        if source_lr is None:
            # No labels in source project for the given data point.
            continue

        should_save = False
        for obj in source_lr.get_object_instances():
            if obj.ontology_item.shape != Shape.POLYGON or obj.object_name not in ontology_lookup:
                continue

            new_instance = ontology_lookup[obj.object_name].create_instance()
            has_annotations = False
            for annotation in obj.get_annotations():
                has_annotations = True

                coords = cast(PolygonCoordinates, annotation.coordinates)
                frame_view = source_lr.get_frame_view(frame=annotation.frame)
                width, height = frame_view.width, frame_view.height

                mask = np.zeros((height, width), dtype=np.uint8)
                np_polygon = np.array([[p.x * width, p.y * height] for p in coords.values]).astype(np.int32)
                cv2.fillPoly(mask, [np_polygon], 1)

                target_coordinates = BitmaskCoordinates(mask.astype(bool))
                new_instance.set_for_frames(coordinates=target_coordinates, frames=annotation.frame)

            if has_annotations:
                should_save = True
                target_lr.add_object_instance(new_instance)

        if should_save:
            bundle_size += 1
            target_lr.save(bundle=bundle)

        if bundle_size >= 200:
            try_execute(bundle.execute)
            bundle = target_project.create_bundle()
            bundle_size = 0

        try_execute(target_lr.save)

    if bundle_size > 0:
        try_execute(bundle.execute)

    print("Done!")


if __name__ == "__main__":
    typer.run(convert_labels)

Converting polygons to bounding boxes

The following script converts polygon labels from the source Project into bounding box labels in the target Project. The conversion applies to images, videos, image groups, and image sequences.

For this conversion to be effective, it's crucial that both the source and target Projects are linked to the same Dataset. The script is agnostic to which Workflow stage the source or target data units are in.

ℹ️

Note

To install the required Python dependencies, run the following command in your terminal:

python -m pip install tqdm typer encord

This script utilizes Typer, allowing you to conveniently insert arguments in your terminal rather than directly into the script.

To execute the script in your terminal, use the following command:

python script-name.py

Replace script-name.py with the actual name of your script and respond to the prompted questions during execution.

For a non-interactive usage, provide the following parameters:

python script-name.py --keyfile "<ssh_key_path>" --source-project-hash "<source_project_hash>" --target-project-hash "<target_project_hash>"

Replace the placeholders with the appropriate values:

  • script-name.py with the name of your script.
  • <ssh_key_path> with the path to your private SSH key associated with Encord.
  • <source_project_hash> with the hash of the source project containing the polygon labels.
  • <target_project_hash> with the hash of the target project that will contain the bounding boxes labels.

For example:

python convert-polygons.py --keyfile "~/.ssh/id_ed25519" --source-project-hash "aaaaaa-bbbb-cccc-ddd-eeeeeeeeeee" --target-project-hash "ffffffff-0000-1111-222-333333333`

🚧

WARNING

This script is intended for a one-time operation only. Running it more than once will result in duplicate labels.

import logging
import time
from pathlib import Path
from typing import cast

import typer
from encord import EncordUserClient, Project
from encord.objects import LabelRowV2, Object, Shape
from encord.objects.coordinates import BoundingBoxCoordinates, PolygonCoordinates
from tqdm import tqdm, trange
from typing_extensions import Annotated

MAX_NUM_EXECUTION_ATTEMPTS = 10


def try_execute(func, kwargs=None):
    for n in range(MAX_NUM_EXECUTION_ATTEMPTS):
        try:
            if kwargs:
                return func(**kwargs)
            else:
                return func()
        except Exception as e:
            logging.warning(
                f"Handling {e} when executing {func} with args {kwargs}.\n" f" Trying again, attempt number {n + 1}."
            )
            time.sleep(0.5 * MAX_NUM_EXECUTION_ATTEMPTS)  # Linear backoff
    raise Exception("Reached maximum number of execution attempts.")


def initialize_label_rows(project: Project, batch_size: int = 200, include_unlabeled: bool = False) -> list[LabelRowV2]:
    label_rows = [lr for lr in project.list_label_rows_v2() if include_unlabeled or lr.label_hash is not None]
    for start in trange(
        0,
        len(label_rows),
        batch_size,
        desc=f"Initializing label rows [{project.title}]",
    ):
        bundle = project.create_bundle()
        for lr in label_rows[start : start + batch_size]:
            lr.initialise_labels(bundle=bundle)
        try_execute(bundle.execute)
    return label_rows


def populate_ontology_of_target_project(
    client: EncordUserClient, source: Project, target: Project
) -> dict[str, Object]:
    # Update the target ontology with potentially missing items
    source_ontology = source.ontology_structure
    target_ontology = client.get_ontology(target.ontology_hash)

    ontology_lookup: dict[str, Object] = {}
    for obj in source_ontology.objects:
        if obj.shape != Shape.POLYGON:
            continue

        # Find the bounding box object in the target ontology with the same name
        match = None
        for tobj in target_ontology.structure.objects:
            if tobj.shape != Shape.BOUNDING_BOX or tobj.name != obj.name:
                continue
            match = tobj
            break

        if match is None:
            match = target_ontology.structure.add_object(obj.name, Shape.BOUNDING_BOX)
        ontology_lookup[obj.name] = match

    target_ontology.save()
    return ontology_lookup


def convert_labels(
    keyfile: Annotated[
        Path,
        typer.Option(
            help="Path to private SSH key associated with Encord",
            prompt="Where is your SSH-key file stored?",
        ),
    ],
    source_project_hash: Annotated[
        str,
        typer.Option(
            help="Hash of the project from which annotations and classifications will be copied",
            prompt="What's the project hash of the SOURCE project?",
        ),
    ],
    target_project_hash: Annotated[
        str,
        typer.Option(
            help="Hash of the project where the bounding boxes will be added",
            prompt="What's the project hash of the TARGET project?",
        ),
    ],
):
    keyfile = keyfile.expanduser().resolve()

    # create a connection
    user_client = EncordUserClient.create_with_ssh_private_key(keyfile.expanduser().read_text())

    # Initialize projects
    target_project = user_client.get_project(target_project_hash)
    source_project = user_client.get_project(source_project_hash)

    # Set up the ontology for the target project if not filled already.
    ontology_lookup = populate_ontology_of_target_project(user_client, source_project, target_project)
    target_project.refetch_ontology()

    # Initialize labels
    source_project_label_rows = initialize_label_rows(source_project)
    target_project_label_rows = initialize_label_rows(
        target_project,
        include_unlabeled=True,
    )

    # Lookup for reading labels from the source project
    source_project_label_rows_by_data_hash = {lr.data_hash: lr for lr in source_project_label_rows}

    bundle = target_project.create_bundle()
    bundle_size = 0

    # Perform the conversion from polygons to bounding boxes and upload.
    for target_lr in tqdm(target_project_label_rows, desc="Migrating labels"):
        source_lr = source_project_label_rows_by_data_hash.get(target_lr.data_hash)
        if source_lr is None:
            # No labels in source project for the given data point.
            continue

        should_save = False
        for obj in source_lr.get_object_instances():
            if obj.ontology_item.shape != Shape.POLYGON or obj.object_name not in ontology_lookup:
                continue

            new_instance = ontology_lookup[obj.object_name].create_instance()
            has_annotations = False
            for annotation in obj.get_annotations():
                has_annotations = True

                coords = cast(PolygonCoordinates, annotation.coordinates)
                xs, ys = zip(*((point.x, point.y) for point in coords.values))

                min_x, max_x = min(xs), max(xs)
                min_y, max_y = min(ys), max(ys)

                target_coordinates = BoundingBoxCoordinates(
                    height=max_y - min_y,
                    width=max_x - min_x,
                    top_left_x=min_x,
                    top_left_y=min_y,
                )
                new_instance.set_for_frames(coordinates=target_coordinates, frames=annotation.frame)

            if has_annotations:
                should_save = True
                target_lr.add_object_instance(new_instance)

        if should_save:
            bundle_size += 1
            target_lr.save(bundle=bundle)

        if bundle_size >= 200:
            try_execute(bundle.execute)
            bundle = target_project.create_bundle()
            bundle_size = 0

        try_execute(target_lr.save)

    if bundle_size > 0:
        try_execute(bundle.execute)

    print("Done!")


if __name__ == "__main__":
    typer.run(convert_labels)