Benchmark QA Workflow
To set up a Benchmark QA Workflow, you need to create two distinct Projects:
- Benchmark Project: This Project establishes the “ground-truth” labels, which serve as the benchmark for evaluating annotator performance.
- Production Project: In this Project, annotators generate the production labels. Annotator performance is scored against the ground-truth labels from the first Project.
STEP 1: Import Files into Encord
You must first import your files into Encord. This includes files that are used to establish ‘ground-truth’ labels, and your production data.
Create a Cloud Integration
Create a Folder to Store your Files
- Navigate to Files under the Index heading in the Encord platform.
- Click the + New folder button to create a new folder. A dialog to create a new folder appears.
-
Give the folder a meaningful name and description.
-
Click Create to create the folder. The folder is listed in Files.
Create JSON or CSV for Import
To import files from cloud storage into Encord, you must create a JSON or CSV file specifying the files you want to upload.
Find helpful scripts for creating JSON and CSV files for the data upload process here.
All types of data (videos, images, image groups, image sequences, and DICOM) from a private cloud are added to a Dataset in the same way, by using a JSON or CSV file. The file includes links to all images, image groups, videos and DICOM files in your cloud storage.
Create JSON file for Import
For detailed information about the JSON file format used for import go here.
The information provided about each of the following data types is designed to get you up and running as quickly as possible without going too deeply into the why or how. Look at the template for each data type, then the examples, and adjust the examples to suit your needs.
skip_duplicate_urls
is set to true
, all object URLs that exactly match existing images/videos in the dataset are skipped.AWS JSON
Videos
sampling_rate
to 0
. This imports only the first frame and any key frames you specify in the video. This can significantly speed up the import of your data into Active and Index and help you to focus on only data you identify as critical.The following table provides some guidance for the examples provided after the table.
Title | Description |
---|---|
Template | Provides the proper JSON format to import videos into Encord. This template provides examples from the most basic to the most complex. |
Data | Imports videos into Encord. Why would I do this?
|
Key Frames | Imports videos with an Encord title and specifies key frames (frames of interest) for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Custom Metadata | Imports videos with an Encord title, specifies key frames (frames of interest), and custom metadata for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Embeddings | Imports videos with an Encord title, specifies key frames (frames of interest), custom metadata, and custom embeddings for Active and Index. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If Refer to our documentation for more information about Index with Custom Metadata, Index with Custom Embeddings, Active with Custom Metadata and Active with Custom Embeddings. |
Video Metadata | Imports videos with the videoMetadata flag. When the videoMetadata flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate. |
Audio Files
The following is an example JSON file for uploading two audio files to Encord.
- Template: Imports audio files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Audio Metadata: Imports one audio file with the
audiometadata
flag. When theaudiometadata
flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate.
PDFs
The following is an example JSON file for uploading PDFs to Encord.
- Template: Imports PDFs with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two PDFs with no title or custom metadata.
- Custom Metadata: Imports two pdfs with a title and custom metadata.
Text Files
The following is an example JSON file for uploading text files to Encord.
- Template: Imports text files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two text files with no title or custom metadata.
- Custom Metadata: Imports two text files with a title and custom metadata.
Single Images
For detailed information about the JSON file format used for import go here.
The JSON structure for single images parallels that of videos.
Template: Provides the proper JSON format to import images into Encord.
Examples:
-
Data Imports the images only.
-
Custom Metadata: Imports images with an Encord title for the images and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Embeddings: Imports images with an Encord title, custom metadata, and custom embeddings for each image. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Image Metadata: Imports images with image metadata. This improves the import speed for your images.
Image groups
For detailed information about the JSON file format used for import go here.
- Image groups are collections of images that are processed as one annotation task.
- Images within image groups remain unaltered, meaning that images of different sizes and resolutions can form an image group without the loss of data.
- Image groups do NOT require ‘write’ permissions to your cloud storage.
- Custom metadata is defined per image group, not per image. See our documentation here to learn how to add
clientMetadata
to images in an image group. - If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image groups in the dataset are skipped.
objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
Examples:
-
Data: Imports the image groups only.
-
Custom Metadata: Imports image groups with an Encord title for the image groups and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
Image sequences
For detailed information about the JSON file format used for import go here.
- Image sequences are collections of images that are processed as one annotation task and represented as a video.
- Images within image sequences may be altered as images of varying sizes and resolutions are made to match that of the first image in the sequence.
- Creating Image sequences from cloud storage requires ‘write’ permissions, as new files have to be created in order to be read as a video.
- Each object in the
image_groups
array with thecreateVideo
flag set totrue
represents a single image sequence. - Custom client metadata is defined per image sequence, not per image.
- If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image sequences in the dataset are skipped.
createVideo
flag to be set to true
. Both use the key image_groups
.objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
** Examples:**
-
Data: Imports the images groups only.
-
Custom Metadata: Imports image groups and custom metadata. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
DICOM
For detailed information about the JSON file format used for import go here.
- Each
dicom_series
element can contain one or more DICOM series. - Each series requires a title and at least one object URL, as shown in the example below.
- If
skip_duplicate_urls
is set totrue
, all object URLs exactly matching existing DICOM files in the dataset will be skipped.
.dcm
file and does not have to be specific during the upload to Encord. The following is an example JSON for uploading three DICOM series belonging to a study. Each title and object URL correspond to individual DICOM series.
- The first series contains only a single object URL, as it is composed of a single file.
- The second series contains 3 object URLs, as it is composed of three separate files.
- The third series contains 2 object URLs, as it is composed of two separate files.
For each DICOM upload, an additional DicomSeries
file is created. This file represents the series file-set. Only DicomSeries
are displayed in the Encord application.
{
"dicom_series": [
{
"title": "Series-1",
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series1-file.dcm"
},
{
"title": "Series-2",
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series2-file1.dcm",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series2-file2.dcm",
"objectUrl_2": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series2-file3.dcm",
},
{
"title": "Series-3",
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series3-file1.dcm",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/study1-series3-file2.dcm",
}
],
"skip_duplicate_urls": true
}
NIfTI
The following is an example JSON file for uploading two NIfTI files to Encord.
{
"nifti": [
{
"title": "<file-1>",
"objectUrl": "https://my-bucket/.../nifti-file1.nii"
},
{
"title": "<file-2>",
"objectUrl": "https://my-bucket/.../nifti-file2.nii.gz"
}
],
"skip_duplicate_urls": true
}
You can upload multiple file types using a single JSON file. The example below shows 1 image, 2 videos, 2 image sequences, and 1 image group.
{
"images": [
{
"objectUrl": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/Image1.png"
}
],
"videos": [
{
"objectUrl": "https://encord-integration.s3.eu-west-2.amazonaws.com/videos/Cooking.mp4"
},
{
"objectUrl": "https://encord-integration.s3.eu-west-2.amazonaws.com/videos/Oranges.mp4"
}
],
"image_groups": [
{
"title": "apple-samsung-light",
"createVideo": true,
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(32).jpg",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(33).jpg",
"objectUrl_2": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(34).jpg",
"objectUrl_3": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(35).jpg"
},
{
"title": "apple-samsung-dark",
"createVideo": true,
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/2+(32).jpg",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/2+(33).jpg",
"objectUrl_2": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/2+(34).jpg",
"objectUrl_3": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/2+(35).jpg"
}
],
"image_groups": [
{
"title": "apple-ios-light",
"createVideo": false,
"objectUrl_0": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/3+(32).jpg",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/3+(33).jpg"
}
],
"skip_duplicate_urls": true
}
GCP JSON
Videos
sampling_rate
to 0
. This imports only the first frame and any key frames you specify in the video. This can significantly speed up the import of your data into Active and Index and help you to focus on only data you identify as critical.The following table provides some guidance for the examples provided after the table.
Title | Description |
---|---|
JSON for videos | Provides the proper JSON format to import videos into Encord. This template provides examples from the most basic to the most complex. |
Data | Imports videos into Encord. Why would I do this?
|
Key Frames | Imports videos with an Encord title and specifies key frames (frames of interest) for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Custom Metadata | Imports videos with an Encord title, specifies key frames (frames of interest), and custom metadata for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Embeddings | Imports videos with an Encord title, specifies key frames (frames of interest), custom metadata, and custom embeddings for Active and Index. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If Refer to our documentation for more information about Index with Custom Metadata, Index with Custom Embeddings, Active with Custom Metadata and Active with Custom Embeddings. |
Video Metadata | Imports videos with the videoMetadata flag. When the videoMetadata flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate. |
Audio Files
The following is an example JSON file for uploading two audio files to Encord.
- Example 1 imports audio files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Example 2 imports one audio file with the
audiometadata
flag. When theaudiometadata
flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate.
PDFs
The following is an example JSON file for uploading PDFs to Encord.
- Template: Imports PDFs with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two PDFs with no title or custom metadata.
- Custom Metadata: Imports two pdfs with a title and custom metadata.
Text Files
The following is an example JSON file for uploading text files to Encord.
- Template: Imports text files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two text files with no title or custom metadata.
- Custom Metadata: Imports two text files with a title and custom metadata.
Single Images
For detailed information about the JSON file format used for import go here.
The JSON structure for single images parallels that of videos.
Template: Provides the proper JSON format to import images into Encord.
Examples:
-
Data Imports the images only.
-
Custom Metadata: Imports images with an Encord title for the images and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Embeddings: Imports images with an Encord title, custom metadata, and custom embeddings for each image. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Image Metadata: Imports images with image metadata. This improves the import speed for your images.
Image groups
For detailed information about the JSON file format used for import go here.
- Image groups are collections of images that are processed as one annotation task.
- Images within image groups remain unaltered, meaning that images of different sizes and resolutions can form an image group without the loss of data.
- Image groups do NOT require ‘write’ permissions to your cloud storage.
- Custom metadata is defined per image group, not per image. See our documentation here to learn how to add
clientMetadata
to images in an image group. - If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image groups in the dataset are skipped.
objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
Examples:
-
Data: Imports the image groups only.
-
Custom Metadata: Imports image groups with an Encord title for the image groups and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
Image sequences
For detailed information about the JSON file format used for import go here.
- Image sequences are collections of images that are processed as one annotation task and represented as a video.
- Images within image sequences may be altered as images of varying sizes and resolutions are made to match that of the first image in the sequence.
- Creating Image sequences from cloud storage requires ‘write’ permissions, as new files have to be created in order to be read as a video.
- Each object in the
image_groups
array with thecreateVideo
flag set totrue
represents a single image sequence. - Custom client metadata is defined per image sequence, not per image.
- If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image sequences in the dataset are skipped.
createVideo
flag to be set to true
. Both use the key image_groups
.objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
** Examples:**
-
Data: Imports the images groups only.
-
Custom Metadata: Imports image groups and custom metadata. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
DICOM
For detailed information about the JSON file format used for import go here.
- Each
dicom_series
element can contain one or more DICOM series. - Each series requires a title and at least one object URL, as shown in the example below.
- If
skip_duplicate_urls
is set totrue
, all object URLs exactly matching existing DICOM files in the dataset will be skipped.
.dcm
file and does not have to be specific during the upload to Encord. The following is an example JSON for uploading three DICOM series belonging to a study. Each title and object URL correspond to individual DICOM series.
- The first series contains only a single object URL, as it is composed of a single file.
- The second series contains 3 object URLs, as it is composed of three separate files.
- The third series contains 2 object URLs, as it is composed of two separate files.
For each DICOM upload, an additional DicomSeries
file is created. This file represents the series file-set. Only DicomSeries
are displayed in the Encord application.
{
"dicom_series": [
{
"title": "Series-1",
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series1-file.dcm"
},
{
"title": "Series-2",
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series2-file1.dcm",
"objectUrl_1": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series2-file2.dcm",
"objectUrl_2": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series2-file3.dcm",
},
{
"title": "Series-3",
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series3-file1.dcm",
"objectUrl_1": "https://storage.cloud.google.com/encord-image-bucket/images/study1-series3-file2.dcm",
}
],
"skip_duplicate_urls": true
}
NIfTI
The following is an example JSON file for uploading two NIfTI files to Encord.
{
"nifti": [
{
"title": "<file-1>",
"objectUrl": "https://my-bucket/.../nifti-file1.nii"
},
{
"title": "<file-2>",
"objectUrl": "https://my-bucket/.../nifti-file2.nii.gz"
}
],
"skip_duplicate_urls": true
}
You can upload multiple file types using a single JSON file. The example below shows 1 image, 2 videos, 2 image sequences, and 1 image group.
{
"images": [
{
"objectUrl": "https://storage.cloud.google.com/encord-image-bucket/images/Image1.png"
}
],
"videos": [
{
"objectUrl": "https://storage.cloud.google.com/encord-image-bucket/videos/Cooking.mp4"
},
{
"objectUrl": "https://storage.cloud.google.com/encord-image-bucket/videos/Oranges.mp4"
}
],
"image_groups": [
{
"title": "apple-samsung-light",
"createVideo": true,
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/1+(32).jpg",
"objectUrl_1": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(33).jpg",
"objectUrl_2": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(34).jpg",
"objectUrl_3": "https://encord-integration.s3.eu-west-2.amazonaws.com/images/1+(35).jpg"
},
{
"title": "apple-samsung-dark",
"createVideo": true,
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/2+(32).jpg",
"objectUrl_1": "https://storage.cloud.google.com/encord-image-bucket/images/2+(33).jpg",
"objectUrl_2": "https://storage.cloud.google.com/encord-image-bucket/images/2+(34).jpg",
"objectUrl_3": "https://storage.cloud.google.com/encord-image-bucket/images/2+(35).jpg"
}
],
"image_groups": [
{
"title": "apple-ios-light",
"createVideo": false,
"objectUrl_0": "https://storage.cloud.google.com/encord-image-bucket/images/3+(32).jpg",
"objectUrl_1": "https://storage.cloud.google.com/encord-image-bucket/images/3+(33).jpg"
}
],
"skip_duplicate_urls": true
}
Azure JSON
Videos
sampling_rate
to 0
. This imports only the first frame and any key frames you specify in the video. This can significantly speed up the import of your data into Active and Index and help you to focus on only data you identify as critical.The following table provides some guidance for the examples provided after the table.
Title | Description |
---|---|
Template | Provides the proper JSON format to import videos into Encord. This template provides examples from the most basic to the most complex. |
Data | Imports videos into Encord. Why would I do this?
|
Key Frames | Imports videos with an Encord title and specifies key frames (frames of interest) for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Custom Metadata | Imports videos with an Encord title, specifies key frames (frames of interest), and custom metadata for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Embeddings | Imports videos with an Encord title, specifies key frames (frames of interest), custom metadata, and custom embeddings for Active and Index. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If Refer to our documentation for more information about Index with Custom Metadata, Index with Custom Embeddings, Active with Custom Metadata and Active with Custom Embeddings. |
Video Metadata | Imports videos with the videoMetadata flag. When the videoMetadata flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate. |
Audio Files
The following is an example JSON file for uploading two audio files to Encord.
- Template: Imports audio files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Audio Metadata: Imports one audio file with the
audiometadata
flag. When theaudiometadata
flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate.
PDFs
The following is an example JSON file for uploading PDFs to Encord.
- Template: Imports PDFs with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two PDFs with no title or custom metadata.
- Custom Metadata: Imports two pdfs with a title and custom metadata.
Text Files
The following is an example JSON file for uploading text files to Encord.
- Template: Imports text files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two text files with no title or custom metadata.
- Custom Metadata: Imports two text files with a title and custom metadata.
Single Images
For detailed information about the JSON file format used for import go here.
The JSON structure for single images parallels that of videos.
Template: Provides the proper JSON format to import images into Encord.
Examples:
-
Data Imports the images only.
-
Custom Metadata: Imports images with an Encord title for the images and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Embeddings: Imports images with an Encord title, custom metadata, and custom embeddings for each image. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Image Metadata: Imports images with image metadata. This improves the import speed for your images.
Image groups
For detailed information about the JSON file format used for import go here.
- Image groups are collections of images that are processed as one annotation task.
- Images within image groups remain unaltered, meaning that images of different sizes and resolutions can form an image group without the loss of data.
- Image groups do NOT require ‘write’ permissions to your cloud storage.
- Custom metadata is defined per image group, not per image. See our documentation here to learn how to add
clientMetadata
to images in an image group. - If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image groups in the dataset are skipped.
objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
Examples:
-
Data: Imports the image groups only.
-
Custom Metadata: Imports image groups with an Encord title for the image groups and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
Image sequences
For detailed information about the JSON file format used for import go here.
- Image sequences are collections of images that are processed as one annotation task and represented as a video.
- Images within image sequences may be altered as images of varying sizes and resolutions are made to match that of the first image in the sequence.
- Creating Image sequences from cloud storage requires ‘write’ permissions, as new files have to be created in order to be read as a video.
- Each object in the
image_groups
array with thecreateVideo
flag set totrue
represents a single image sequence. - Custom client metadata is defined per image sequence, not per image.
- If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image sequences in the dataset are skipped.
createVideo
flag to be set to true
. Both use the key image_groups
.objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
** Examples:**
-
Data: Imports the images groups only.
-
Custom Metadata: Imports image groups and custom metadata. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
DICOM
For detailed information about the JSON file format used for import go here.
- Each
dicom_series
element can contain one or more DICOM series. - Each series requires a title and at least one object URL, as shown in the example below.
- If
skip_duplicate_urls
is set totrue
, all object URLs exactly matching existing DICOM files in the dataset will be skipped.
.dcm
file and does not have to be specific during the upload to Encord. The following is an example JSON for uploading three DICOM series belonging to a study. Each title and object URL correspond to individual DICOM series.
- The first series contains only a single object URL, as it is composed of a single file.
- The second series contains 3 object URLs, as it is composed of three separate files.
- The third series contains 2 object URLs, as it is composed of two separate files.
For each DICOM upload, an additional DicomSeries
file is created. This file represents the series file-set. Only DicomSeries
are displayed in the Encord application.
{
"dicom_series": [
{
"title": "Series-1",
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series1-file.dcm"
},
{
"title": "Series-2",
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series2-file1.dcm",
"objectUrl_1": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series2-file2.dcm",
"objectUrl_2": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series2-file3.dcm",
},
{
"title": "Series-3",
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series3-file1.dcm",
"objectUrl_1": "https://myaccount.blob.core.windows.net/encordcontainer/study1-series3-file2.dcm",
}
],
"skip_duplicate_urls": true
}
NIfTI
The following is an example JSON file for uploading two NIfTI files to Encord.
{
"nifti": [
{
"title": "<file-1>",
"objectUrl": "https://my-bucket/.../nifti-file1.nii"
},
{
"title": "<file-2>",
"objectUrl": "https://my-bucket/.../nifti-file2.nii.gz"
}
],
"skip_duplicate_urls": true
}
You can upload multiple file types using a single JSON file. The example below shows 1 image, 2 videos, 2 image sequences, and 1 image group.
{
"images": [
{
"objectUrl": "https://myaccount.blob.core.windows.net/encordcontainer/Image1.png"
}
],
"videos": [
{
"objectUrl": "https://myaccount.blob.core.windows.net/encordcontainer/Cooking.mp4"
},
{
"objectUrl": "https://myaccount.blob.core.windows.net/encordcontainer/Oranges.mp4"
}
],
"image_groups": [
{
"title": "apple-samsung-light",
"createVideo": true,
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/1-Samsung-S4-Light+Environment/1+(32).jpg",
"objectUrl_1": "https://myaccount.blob.core.windows.net/encordcontainer/1-Samsung-S4-Light+Environment/1+(33).jpg",
"objectUrl_2": "https://myaccount.blob.core.windows.net/encordcontainer/1-Samsung-S4-Light+Environment/1+(34).jpg",
"objectUrl_3": "https://myaccount.blob.core.windows.net/encordcontainer/1-Samsung-S4-Light+Environment/1+(35).jpg"
},
{
"title": "apple-samsung-dark",
"createVideo": true,
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/2-samsung-S4-Dark+Environment/2+(32).jpg",
"objectUrl_1": "https://myaccount.blob.core.windows.net/encordcontainer/2-samsung-S4-Dark+Environment/2+(33).jpg",
"objectUrl_2": "https://myaccount.blob.core.windows.net/encordcontainer/2-samsung-S4-Dark+Environment/2+(34).jpg",
"objectUrl_3": "https://myaccount.blob.core.windows.net/encordcontainer/2-samsung-S4-Dark+Environment/2+(35).jpg"
}
],
"image_groups": [
{
"title": "apple-ios-light",
"createVideo": false,
"objectUrl_0": "https://myaccount.blob.core.windows.net/encordcontainer/3-IOS-4-Light+Environment/3+(32).jpg",
"objectUrl_1": "https://myaccount.blob.core.windows.net/encordcontainer/3-IOS-4-Light+Environment/3+(33).jpg"
}
],
"skip_duplicate_urls": true
}
OTC JSON
Videos
sampling_rate
to 0
. This imports only the first frame and any key frames you specify in the video. This can significantly speed up the import of your data into Active and Index and help you to focus on only data you identify as critical.The following table provides some guidance for the examples provided after the table.
Title | Description |
---|---|
Template | Provides the proper JSON format to import videos into Encord. This template provides examples from the most basic to the most complex. |
Data | Imports videos into Encord. Why would I do this?
|
Key Frames | Imports videos with an Encord title and specifies key frames (frames of interest) for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Custom Metadata | Imports videos with an Encord title, specifies key frames (frames of interest), and custom metadata for Active and Index. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If |
Embeddings | Imports videos with an Encord title, specifies key frames (frames of interest), custom metadata, and custom embeddings for Active and Index. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number. Why would I do this?
Specifying a sampling_rate of 0 only imports the first frame and all key frames of your video into Active and Index.
If Refer to our documentation for more information about Index with Custom Metadata, Index with Custom Embeddings, Active with Custom Metadata and Active with Custom Embeddings. |
Video Metadata | Imports videos with the videoMetadata flag. When the videoMetadata flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate. |
Audio Files
The following is an example JSON file for uploading two audio files to Encord.
- Template: Imports audio files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Audio Metadata: Imports one audio file with the
audiometadata
flag. When theaudiometadata
flag is present in the JSON file, we directly use the supplied metadata without performing any additional validation, and do not store the file on our servers. To guarantee accurate labels, it is crucial that the metadata you provide is accurate.
PDFs
The following is an example JSON file for uploading PDFs to Encord.
- Template: Imports PDFs with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two PDFs with no title or custom metadata.
- Custom Metadata: Imports two pdfs with a title and custom metadata.
Text Files
The following is an example JSON file for uploading text files to Encord.
- Template: Imports text files with an Encord title, and with custom metadata. Custom metadata only appears in the Encord UI in Active and Index as an option to filter your data.
- Data: Imports two text files with no title or custom metadata.
- Custom Metadata: Imports two text files with a title and custom metadata.
Single Images
For detailed information about the JSON file format used for import go here.
The JSON structure for single images parallels that of videos.
Template: Provides the proper JSON format to import images into Encord.
Examples:
-
Data Imports the images only.
-
Custom Metadata: Imports images with an Encord title for the images and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Embeddings: Imports images with an Encord title, custom metadata, and custom embeddings for each image. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
-
Image Metadata: Imports images with image metadata. This improves the import speed for your images.
Image groups
For detailed information about the JSON file format used for import go here.
- Image groups are collections of images that are processed as one annotation task.
- Images within image groups remain unaltered, meaning that images of different sizes and resolutions can form an image group without the loss of data.
- Image groups do NOT require ‘write’ permissions to your cloud storage.
- Custom metadata is defined per image group, not per image. See our documentation here to learn how to add
clientMetadata
to images in an image group. - If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image groups in the dataset are skipped.
objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
Examples:
-
Data: Imports the image groups only.
-
Custom Metadata: Imports image groups with an Encord title for the image groups and with custom metadata for each image. Custom metadata only appears in Active and Index as an option to filter your data. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
Image sequences
For detailed information about the JSON file format used for import go here.
- Image sequences are collections of images that are processed as one annotation task and represented as a video.
- Images within image sequences may be altered as images of varying sizes and resolutions are made to match that of the first image in the sequence.
- Creating Image sequences from cloud storage requires ‘write’ permissions, as new files have to be created in order to be read as a video.
- Each object in the
image_groups
array with thecreateVideo
flag set totrue
represents a single image sequence. - Custom client metadata is defined per image sequence, not per image.
- If
skip_duplicate_urls
is set totrue
, all URLs exactly matching existing image sequences in the dataset are skipped.
createVideo
flag to be set to true
. Both use the key image_groups
.objectUrl_{position_number}
).Template: Provides the proper JSON format to import image groups into Encord.
** Examples:**
-
Data: Imports the images groups only.
-
Custom Metadata: Imports image groups and custom metadata. This example includes the following custom metadata types: boolean, varchar, datetime, uuid, number.
DICOM
For detailed information about the JSON file format used for import go here.
- Each
dicom_series
element can contain one or more DICOM series. - Each series requires a title and at least one object URL, as shown in the example below.
- If
skip_duplicate_urls
is set totrue
, all object URLs exactly matching existing DICOM files in the dataset will be skipped.
.dcm
file and does not have to be specific during the upload to Encord. The following is an example JSON for uploading three DICOM series belonging to a study. Each title and object URL correspond to individual DICOM series.
- The first series contains only a single object URL, as it is composed of a single file.
- The second series contains 3 object URLs, as it is composed of three separate files.
- The third series contains 2 object URLs, as it is composed of two separate files.
For each DICOM upload, an additional DicomSeries
file is created. This file represents the series file-set. Only DicomSeries
are displayed in the Encord application.
{
"dicom_series": [
{
"title": "Series-1",
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series1-file.dcm"
},
{
"title": "Series-2",
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series2-file1.dcm",
"objectUrl_1": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series2-file2.dcm",
"objectUrl_2": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series2-file3.dcm",
},
{
"title": "Series-3",
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series3-file1.dcm",
"objectUrl_1": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/study1-series3-file2.dcm",
}
],
"skip_duplicate_urls": true
}
NIfTI
The following is an example JSON file for uploading two NIfTI files to Encord.
{
"nifti": [
{
"title": "<file-1>",
"objectUrl": "https://my-bucket/.../nifti-file1.nii"
},
{
"title": "<file-2>",
"objectUrl": "https://my-bucket/.../nifti-file2.nii.gz"
}
],
"skip_duplicate_urls": true
}
You can upload multiple file types using a single JSON file. The example below shows 1 image, 2 videos, 2 image sequences, and 1 image group.
{
"images": [
{
"objectUrl": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/Image1.png"
}
],
"videos": [
{
"objectUrl": "https://encord-bucket.obs.eu-de.otc.t-systems.com/videos/Cooking.mp4"
},
{
"objectUrl": "https://encord-bucket.obs.eu-de.otc.t-systems.com/videos/Oranges.mp4"
}
],
"image_groups": [
{
"title": "apple-samsung-light",
"createVideo": true,
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/1+(32).jpg",
"objectUrl_1": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/1+(33).jpg",
"objectUrl_2": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/1+(34).jpg",
"objectUrl_3": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/1+(35).jpg"
},
{
"title": "apple-samsung-dark",
"createVideo": true,
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/2+(32).jpg",
"objectUrl_1": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/2+(33).jpg",
"objectUrl_2": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/2+(34).jpg",
"objectUrl_3": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/2+(35).jpg"
}
],
"image_groups": [
{
"title": "apple-ios-light",
"createVideo": false,
"objectUrl_0": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/3+(32).jpg",
"objectUrl_1": "https://encord-bucket.obs.eu-de.otc.t-systems.com/images/3+(33).jpg"
}
],
"skip_duplicate_urls": true
}
Use a Multi-Region Access Point
When using a Multi-Region Access Point for your AWS S3 buckets the JSON file has to be slightly different from the examples provided. Instead of an object’s URL, objects are specified using the ARN of the Multi-Region Access Point followed by the object name. The example below shows how video files from a Multi-Region Access Point would be specified.
{
"videos": [
{
"objectUrl": "Multi-Region-Access-Point-ARN + <object name_1>"
},
{
"objectUrl": "Multi-Region-Access-Point-ARN + <object name_2>",
"title": "my-custom-video-title.mp4",
"clientMetadata": {"optional": "metadata"}
}
],
"skip_duplicate_urls": true
}
{
"videos": [
{
"objectUrl": "https://arn:aws:s3::123123123:accesspoint/frf28frarf9.mrap.s3-accesspoint.amazonaws.com/Videos/2022/video_1.mp4"
},
{
"objectUrl": "https://arn:aws:s3::123123123:accesspoint/frf28frarf9.mrap.s3-accesspoint.amazonaws.com/Videos/2022/video_2.mp4",
"title": "many-cute-cats.mp4",
"clientMetadata": {"optional": "metadata"}
}
],
"skip_duplicate_urls": true
}
Create CSV file for import
In the CSV file format, the column headers specify which type of data is being uploaded. You can add and single file format at a time, or combine multiple data types in a single CSV file.
Details for each data format are given in the sections below.
- Object URLs can’t contain whitespace.
- For backwards compatibility reasons, a single column CSV is supported. A file with the single
ObjectUrl
column is interpreted as a request for video upload. If your objects are of a different type (for example, images), this error displays: “Expected a video, got a file of type XXX”.
Videos
A CSV file containing videos should contain two columns with the following mandatory column headings:
‘ObjectURL’ and ‘Video title’. All headings are case-insensitive.
-
The ‘ObjectURL’ column containing the
objectUrl
. This field is mandatory for each file, as it specifies the full URL of the video resource. -
The ‘Video title’ column containing the
video_title
. If left blank, the original file name is used.
In the example below files 1, 2 and 4 will be assigned the names in the title column, while file 3 will keep its original file name.
ObjectUrl | Video title |
---|---|
path/to/storage-location/frame1.mp4 | Video 1 |
path/to/storage-location/frame2.mp4 | Video 2 |
path/to/storage-location/frame3.mp4 | |
path/to/storage-location/frame4.mp4 | Video 3 |
A CSV file containing single images should contain two columns with the following mandatory headings:
‘ObjectURL’ and ‘Image title’. All headings are case-insensitive.
-
The ‘ObjectURL’ column containing the
objectUrl
. This field is mandatory for each file, as it specifies the full URL of the image resource. -
The ‘Image title’ column containing the
image_title
. If left blank, the original file name is used.
In the example below files 1, 2 and 4 will be assigned the names in the title column, while file 3 will keep its original file name.
ObjectUrl | Image title |
---|---|
path/to/storage-location/frame1.jpg | Image 1 |
path/to/storage-location/frame2.jpg | Image 2 |
path/to/storage-location/frame3.jpg | |
path/to/storage-location/frame4.jpg | Image 3 |
Image groups
A CSV file containing image groups should contain three columns with the following mandatory headings:
‘ObjectURL’, ‘Image group title’, and ‘Create video’. All three headings are case-insensitive.
-
The ‘ObjectURL’ column containing the
objectUrl
. This field is mandatory for each file, as it specifies the full URL of the resource. -
The ‘Image group title’ column containing the
image_group_title
. This field is mandatory, as it determines which image group a file will be assigned to.
In the example below the first two URLs are grouped together into ‘Group 1’, while the following two files are grouped together into ‘Group 2’.
ObjectUrl | Image group title | Create video |
---|---|---|
path/to/storage-location/frame1.jpg | Group 1 | false |
path/to/storage-location/frame2.jpg | Group 1 | false |
path/to/storage-location/frame3.jpg | Group 2 | false |
path/to/storage-location/frame4.jpg | Group 2 | false |
Image sequences
A CSV file containing image sequences should contain three columns with the following mandatory headings: ‘ObjectURL’, ‘Image group title’, and ‘Create video’. All three headings are case-insensitive.
-
The ‘ObjectURL’ column containing the
objectUrl
. This field is mandatory for each file, as it specifies the full URL of the resource. -
The ‘Image group title’ column containing the
image_group_title
. This field is mandatory, as it determines which image sequence a file will be assigned to. The dimensions of the image sequence are determined by the first file in the sequence. -
The ‘Create video’ column. This can be left blank, as the default value is ‘true’.
In the example below the first two URLs are grouped together into ‘Sequence 1’, while the second two files are grouped together into ‘Sequence 2’.
ObjectUrl | Image group title | Create video |
---|---|---|
path/to/storage-location/frame1.jpg | Sequence 1 | true |
path/to/storage-location/frame2.jpg | Sequence 1 | true |
path/to/storage-location/frame3.jpg | Sequence 2 | true |
path/to/storage-location/frame4.jpg | Sequence 2 | true |
A CSV file containing DICOM files should contain two columns with the following mandatory headings: ‘ObjectURL’ and ‘Dicom title’. Both headings are case-insensitive.
-
The ‘ObjectURL’ column containing the
objectUrl
. This field is mandatory for each file, as it specifies the full URL of the resource. -
The ‘Series title’ column containing the
dicom_title
. When two files are given the same title they are grouped into the same DICOM series. If left blank, the original file name is used.
In the example below the first two files are grouped into ‘dicom series 1’, the next two files are grouped into ‘dicom series 2’, while the final file will remain separated as ‘dicom series 3’.
ObjectUrl | Series title |
---|---|
path/to/storage-location/frame1.dcm | dicom series 1 |
path/to/storage-location/frame2.dcm | dicom series 1 |
path/to/storage-location/frame3.dcm | dicom series 2 |
path/to/storage-location/frame4.dcm | dicom series 2 |
path/to/storage-location/frame5.dcm | dicom series 3 |
Multiple file types
You can upload multiple file types with a single CSV file by using a new header each time there is a change of file type. Three headings will be required if image sequences are included.
true
all files that are not image sequences must contain the value false
The example below shows a CSV file for the following:
- Two image sequences composed of 2 files each.
- One image group composed of 2 files.
- One single image.
- One video.
ObjectUrl | Image group title | Create video |
---|---|---|
path/to/storage-location/frame1.jpg | Sequence 1 | true |
path/to/storage-location/frame2.jpg | Sequence 1 | true |
path/to/storage-location/frame3.jpg | Sequence 2 | true |
path/to/storage-location/frame4.jpg | Sequence 2 | true |
path/to/storage-location/frame5.jpg | Group 1 | false |
path/to/storage-location/frame6.jpg | Group 1 | false |
ObjectUrl | Image title | Create video |
path/to/storage-location/frame1.jpg | Image 1 | false |
ObjectUrl | Image title | Create video |
full/storage/path/video.mp4 | Video 1 | false |
Import your Files
Import Cloud Data
- Navigate to Files section of Index in the Encord platform.
- Click into a Folder.
- Click + Upload files. A dialog appears.
- Click Import from cloud data.
Import Local Data
- Navigate to Files section of Index in the Encord platform.
- Click into a Folder.
- Click + Upload files. A dialog appears.
-
Click one of the following:
- Upload: Upload images, videos, and audio files.
- Batch images as: Upload image batches as image groups or image sequences.
- DICOM/NifTi: Upload DICOM or NifTi series.
-
Click Upload after selecting your images or series.
Your files upload into the Folder in Encord.
STEP 2: Create Benchmark Project
The Benchmark Project establishes ground truth labels.
Create a Benchmark Dataset
Create a Dataset containing tasks designed to establish ground truth labels. These files will be used to generate ‘gold-standard’ labels against which annotator performance will be evaluated. Be sure to give the Dataset a clear and descriptive name.
Create an Ontology
Create an Ontology to label your data. The same Ontology is used in the Benchmark Project AND the Production Project.
Create a Workflow Template
Create a Workflow template to establish ground truth labels and give it a meaningful name like “Establishing Benchmarks”. The following example template is just one approach; however, the process for creating benchmark labels is flexible, allowing you to choose any Workflow that suits your requirements.
Create the Benchmark Project
Ensure that you:
- Attach ONLY the Benchmark Dataset to the Project.
- Attach the Benchmark Workflow Template to the Project.
- In the Encord platform, select Projects under Annotate.
- Click the + New annotation project button to create a new Project.
- Give the Project a meaningful title and description, for example “Benchmark Labels”.
- Click the Attach ontology button and attach the Ontology you created.
- Click the Attach dataset button and attach the Dataset you created.
- Click the Load from template button to attach the template you created in STEP 2.3.
-
Click Add collaborators. Add collaborators to the Project and add them to the relevant Workflow stages.
-
Click Create project to finish creating the Project. You have now created the Project to Establish ground-truth labels.
STEP 3: Create Benchmark Labels
Complete the Benchmark Project created in STEP 2 to establish a set of ground truth labels for all data units in the Benchmark Dataset.
STEP 4: Create Production Project
Create a Project where your annotation workforce labels data and is evaluated against benchmark labels.
Create a Production Dataset
Create a Dataset using your Production data. Give the Dataset a meaningful name and description to distinguish it from the Benchmark Dataset created in STEP 2.
Create a Production Workflow Template
Create a Workflow template for labeling production data using Benchmark QA and give it a meaningful name like “Benchmark QA Production Labels”
The following Workflow template is an example showing how to set up a Workflow for Benchmark QA.
-
A Task Agent is used to route tasks depending on whether they originates in the Benchmark Dataset or the Production Dataset.
-
A script is will be added to the Consensus block of the Production Workflow to evaluate annotator performance.
Create The Production Project
Ensure that you:
- Attach both the Benchmark Dataset AND the Production Dataset when creating the Production Project.
- Attach the SAME Ontology you created for the Benchmark Project.
- Attach the Production Workflow Template to the Project.
- In the Encord platform, select Projects under Annotate.
- Click the + New annotation project button to create a new Project.
- Give the Project a meaningful title and description, for example “Benchmark QA Production Labels”.
- Click the Attach ontology button and attach the Ontology you created. Attach the SAME Ontology you created for the Benchmark Project.
- Click the Attach dataset button and attach the Benchmark AND the Production Datasets.
- Click the Load from template button to attach the “Benchmark QA Production Labels” template you created in STEP 4.2.
- Click Add collaborators. Add collaborators to the Project and add them to the relevant Workflow stages.
- Click Create Project to create the Project. You have now created the Project to label production data and evaluate annotators against the benchmark labels.
Create and run the SDK script for the Agent node
Create and run the following benchmark_routing.py
script to check whether a data unit is part of the Benchmark Dataset, or the Production Dataset.
- If a task is part of the Benchmark Dataset, the task is routed along the “Yes” pathway and proceeds to the Consensus 1 stage of the Production Project, where annotator performance is evaluated.
- If the task is not part of the Benchmark Dataset it is routed along the “No” pathway and proceeds to the Annotate 1 stage of the Production Project, where production data is labeled.
# Import dependencies
from encord.user_client import EncordUserClient
from encord.workflow import AgentStage
#Replace <project_hash> with the hash of your Project
PROJECT_HASH = "<project_hash>"
BENCHMARK_DATASET_HASH = "<benchmark_dataset_hash>"
#Replace <private_key_path> with the full path to your private key
SSH_PATH = "<private_key_path>"
# Authenticate using the path to your private key
user_client = EncordUserClient.create_with_ssh_private_key(
ssh_private_key_path=SSH_PATH
)
# Specify the Project that contains the Task agent.
project = user_client.get_project(PROJECT_HASH)
# Specify the Task Agent
agent_stage = project.workflow.get_stage(name="Benchmark Task?", type_=AgentStage)
benchmark_dataset = user_client.get_dataset(BENCHMARK_DATASET_HASH)
benchmark_data_hashes = {data_row.uid for data_row in benchmark_dataset}
for task in agent_stage.get_tasks():
if task.data_hash in benchmark_data_hashes:
task.proceed(pathway_name="YES")
else:
task.proceed(pathway_name="NO")
Create a script for the Review & Refine stage
Crete the following compare_labels.py
script for the Consensus 1 stage in the Production Project. The script compares the annotator’s labels in the Production Project with the ground truth labels established in the Benchmark Project.
All tasks in this stage are rejected and routed to the Archive stage, as they do not constitute production data. The point of the Consensus block is to evaluate annotator performance.
# Import dependencies
from encord import EncordUserClient, Project
from encord.workflow import(
AnnotationStage,
ReviewStage,
ConsensusAnnotationStage,
ConsensusReviewStage,
FinalStage
)
# Replace <project_hash> with the hash of your Project
PROJECT_HASH = "<project_hash>"
# Replace <private_key_path> with the full path to your private key
SSH_PATH = "<private_key_path>"
# Authenticate
user_client = EncordUserClient.create_with_ssh_private_key(
ssh_private_key_path=SSH_PATH
)
# Get Production Project
project = user_client.get_project(PROJECT_HASH)
# The review stage of the Consensus block compares labels on the Benchmark dataset
stage = project.workflow.get_stage(name="Consensus 1", type_=ConsensusReviewStage)
# Code for comparing labels goes here
# For each label branch compare labels
STEP 5: Create labels
Once your Production Project is set up, annotators can begin labeling the production data. Tasks from both the Benchmark Dataset and the Production Dataset are assigned to annotators. Their performance is then assessed based on how accurately they label the Benchmark tasks.
STEP 6: Evaluate Annotator Performance
Run the compare_labels.py
script created in STEP 5.5 to evaluate annotator performance.
Was this page helpful?